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Abstract

Forest regeneration following disturbance is a key ecological process, influencing forest structure and function, spe-

cies assemblages, and ecosystem–climate interactions. Climate change may alter forest recovery dynamics or even

prevent recovery, triggering feedbacks to the climate system, altering regional biodiversity, and affecting the ecosys-

tem services provided by forests. Multiple lines of evidence – including global-scale patterns in forest recovery

dynamics; forest responses to experimental manipulation of CO2, temperature, and precipitation; forest responses to

the climate change that has already occurred; ecological theory; and ecosystem and earth system models – all indicate

that the dynamics of forest recovery are sensitive to climate. However, synthetic understanding of how atmospheric

CO2 and climate shape trajectories of forest recovery is lacking. Here, we review these separate lines of evidence,

which together demonstrate that the dynamics of forest recovery are being impacted by increasing atmospheric CO2

and changing climate. Rates of forest recovery generally increase with CO2, temperature, and water availability.

Drought reduces growth and live biomass in forests of all ages, having a particularly strong effect on seedling recruit-

ment and survival. Responses of individual trees and whole-forest ecosystems to CO2 and climate manipulations

often vary by age, implying that forests of different ages will respond differently to climate change. Furthermore, spe-

cies within a community typically exhibit differential responses to CO2 and climate, and altered community dynam-

ics can have important consequences for ecosystem function. Age- and species-dependent responses provide a

mechanism by which climate change may push some forests past critical thresholds such that they fail to recover to

their previous state following disturbance. Altered dynamics of forest recovery will result in positive and negative

feedbacks to climate change. Future research on this topic and corresponding improvements to earth system models

will be a key to understanding the future of forests and their feedbacks to the climate system.
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Introduction

The dynamic process of forest regeneration following

disturbance is of key importance, with ramifications on

several scales. On a local level, forest recovery involves

wholesale rearrangement of vegetative structure,

carbon (C) and nutrient cycling, ecosystem physiology,

and community structure (Table 1). On a landscape

level, disturbance–recovery dynamics play an impor-

tant role in the maintenance of species diversity, as

different species use forests of different ages as habitat

patches. On a regional to global level, secondary forests

are consequential for their role in climate regulation.

Forests recovering from disturbance (secondary forests)

are strong C sinks and play an important role in the

global C cycle (Running, 2008; Pan et al., 2011). For

instance, in recent years (2000–2007), regrowth of tropi-

cal forests following agricultural abandonment took up

an estimated 1.7 Pg C yr�1 (Pan et al., 2011), which is

equivalent to ca. 20% of annual global fossil fuel emis-

sions. Beyond their influence on climate through their

role in the global carbon cycle, secondary forests also

influence climate through biophysical mechanisms (Liu
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et al., 2005; Maness et al., 2012; O’Halloran et al., 2012);

for example, in northern regions albedo decreases with

forest age and strongly shapes the net climate regula-

tion services of secondary forests (Randerson et al.,

2006; Jin et al., 2012; O’Halloran et al., 2012).

A large and growing proportion of forests have been

affected by major disturbances. Globally, secondary for-

ests recovering from anthropogenic disturbances such

as agriculture and wood harvesting cover an estimated

27 million km2 (Hurtt et al., 2011), and an estimated

1.2 million km2 are in use as forestry plantations

(Kirilenko & Sedjo, 2007). In addition, natural distur-

bances affect a significant proportion of Earth’s ecosys-

tems; disturbances such as fires, storms, droughts, and

insect outbreaks affect over 100 000 km2 annually in

North America alone (Amiro et al., 2010). Climate change

is generally increasing the incidence of natural distur-

bances (Dale et al., 2001), including fires (Westerling et al.,

Table 1 Typical trajectories of change in forest properties following stand-replacing disturbance

Forest property Typical trajectory References

Biomass

Biomass

accumulation rate

Rapid initial increase, peak at intermediate age followed

by slow decline to near zero in old-growth forests.

Lichstein et al., 2009; Yang et al., 2011;

Hember et al., 2012

Leaf biomass or area Rapid initial increase, relatively stable thereafter. Uhl & Jordan, 1984; Bormann & Likens,

1994; Law et al., 2003; Goulden et al.,

2011; Yang et al., 2011

Fine root biomass Rapid initial increase, relatively stable or modest

decline thereafter.

Vogt et al., 1983; Claus & George, 2005;

Yuan & Chen, 2010

Carbon cycle

Gross primary

productivity

Rapid initial increase, relatively stable or modest

decline thereafter.

Amiro et al., 2010; Goulden et al., 2011

Net primary

productivity

Rapid initial increase, modest decline thereafter. Gower et al., 1996; Law et al., 2003;

Pregitzer & Euskirchen, 2004; Goulden

et al., 2011

Heterotrophic

respiration

Relatively constant. Law et al., 2003; Pregitzer & Euskirchen,

2004; Goulden et al., 2011

Net ecosystem

C balance

Initially negative (C source), increasing to maximum

(C sink) at intermediate ages, declining thereafter.

Controversy remains as to whether it declines to zero

(C neutrality).

Law et al., 2003; Pregitzer & Euskirchen,

2004; Zhou et al., 2006; Baldocchi, 2008;

Luyssaert et al., 2008; Amiro et al., 2010;

Goulden et al., 2011

Biogeochemistry

Foliar [N] Relatively constant with age, although both decreases

(more common) and increases have been observed.

Davidson et al., 2007; Drake et al., 2010;

Yang et al., 2011

N mineralization Mixed responses; both increases and decreases have

been observed.

Vitousek et al., 1989; LeDuc & Rothstein,

2010

Hydrology

Canopy transpiration Rapid initial increase, modest decline thereafter. Roberts et al., 2001; Delzon & Loustau,

2005; Amiro et al., 2006; Drake

et al., 2011a

Hydraulic limitation Increases with age. Drake et al., 2010, 2011a

Sensitivity to variation

in water availability

Decreases with age. McMillan et al., 2008; Drake et al., 2010;

Voelker, 2011

Community dynamics

Species turnover Rapid initial turnover, decelerating decrease in

turnover rate as the forest ages.

Anderson, 2007b

Species richness Initial increase, sometimes peaking and declining

modestly in older forests.

Shafi & Yarranton, 1973; Finegan, 1996;

Anderson, 2007b

Competition Increasing competitive advantage to late-successional

species (e.g., shade tolerant, slow growing, higher

wood density, longer lived)

Bazzaz, 1979; Bazzaz & Pickett, 1980;

Finegan, 1984

Size structure Initially, relatively even aged; competitive thinning

and seedling recruitment drive convergence

toward inverse square relationship between

abundance and diameter (diverse age structure)

Enquist et al., 2009
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2006) and biotic disturbances such as insect outbreaks

(Evangelista et al., 2011; Hicke et al., 2011). Theory and

models predict that future climate change may cause

even more drastic changes (e.g., Westerling et al., 2011),

depending on the future course of greenhouse gas emis-

sions and the resultant shifts in climate (IPCC, 2007).

Because secondary forests are strong carbon sinks with

considerable value for greenhouse gas mitigation (Ander-

son-Teixeira & DeLucia, 2011) and also represent a poten-

tial bioenergy source (e.g., US DOE, 2011), secondary

forests are likely to play substantial roles in climate miti-

gation initiatives and bioenergy production (Kirilenko &

Sedjo, 2007).

Although there is strong and abundant evidence that

climate change will affect forests of all ages, we lack

synthetic understanding of how climate change will

interact with forest age to shape the dynamics of forest

recovery. Because forests undergo substantial reorgani-

zation of following major disturbance (Table 1), it is

likely that climate change will have different effects on

forests of different ages, thereby altering the trajectory

of succession relative to those observed for historical

climates. Climate change may alter one or more distinct

features of successional trajectories (Fig. 1). First, the

rate at which the forest moves along the successional

trajectory may be altered without necessarily implying

any changes to the successional pathway or the state of

mature forests; for example, increased productivity

may accelerate biomass accumulation without altering

the biomass of mature forests. Second, the state of

mature forests may be altered; for example, maximum

biomass may be altered if future climates place differ-

ent biophysical constraints on the number and size of

trees that can persist. Third, the successional pathway

may be altered; for example, tree establishment may be

delayed by altered climatic conditions such that pro-

portionally more time is spent in an early-successional

shrub phase. Distinguishing how climate change affects

forests of different ages – and thereby how it alters suc-

cessional trajectories – is critical in understanding how

climate change will impact both recently disturbed and

mature forests.

This review considers how altered atmospheric CO2

and climate are likely to impact trajectories of forest

recovery, with a particular focus on how climate

change may alter the rate of succession, the state of

mature forests, and successional pathways (Fig. 1). We

consider five major lines of evidence relating forest

structure and function to directional variation in CO2

and climate (i.e., average conditions, as opposed to

intra- or interannual variation), each of which yields

insight into how forest recovery may be altered under a

changing climate. First, we review how climatic influ-

ences the dynamics of forest recovery across broad

climatic gradients. Second, we summarize the results of

experimental studies quantifying the effects of elevated

CO2, elevated temperature, and altered precipitation

regimes on the dynamics of forest recovery. Third, we

review observations of altered forest recovery under

contemporary multivariate environmental change.

Fourth, we consider how altered community dynamics

may impact forest recovery. Fifth, we review model

predictions. Finally, we synthesize findings from these

separate lines of evidence, identify remaining uncer-

tainties, and discuss the implications for ecological

communities, biogeochemical processes, and the

climate system.

Dynamics of forest recovery across broad climatic

gradients

Although few studies have evaluated how climate

influences forest recovery across broad climatic gradi-

ents (Prach & Rehounkov�a, 2006; Anderson, 2007a),

there is clear evidence that climate exerts a strong influ-

ence on the rate of succession, the state of mature for-

ests, and their successional pathways (Fig. 1). The rate

of forest regrowth following disturbance is strongly

influenced by climate (Brown & Lugo, 1982; Johnson

et al., 2000; Anderson et al., 2006). Globally, the rate of

living biomass accumulation increases with tempera-

ture, being on average three to four times faster in the

tropics than in high-latitude forests (Fig. 2a; Anderson

et al., 2006). Likewise, biomass accumulation rate

increases with precipitation at a global scale (Fig 2b).

Within the tropics, rates of biomass accumulation are

Fig. 1 Schematic diagram illustrating three ways in which cli-

mate change may impact the dynamics of forest recovery. Rela-

tive to the historical trajectory of change in a forest property

(here, biomass) with age, climate change may alter (1) the rate

of change, (2) the state to which the property converges as the

forest matures (‘mature state’), or (3) the successional pathway

(i.e., the sequence of states through which any given ecosystem

property passes and the relative amount of time spent in each).
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dramatically higher in moist climates (precipitation

1000–2500 mm yr�1) than in dry climates (precipitation

<1000 mm yr�1); however, the positive influence of

precipitation appears to saturate, with rates in wet cli-

mates (precipitation >2500 mm yr�1) less than or equal

to those in moist climates (Brown & Lugo, 1982; Mar�ın-

Spiotta et al., 2008). Although further research is

required to fully understand the mechanisms through

which temperature, water availability, and their sea-

sonal dynamics affect rates of biomass accumulation in

secondary forests, we can say conclusively that warmer

temperatures and higher moisture availability are asso-

ciated with higher rates of biomass accumulation.

Growth in secondary forests is strongly linked to ele-

mental cycling. Biogeochemical cycles of elements

including C, nitrogen (N), and phosphorous (P) are

coupled to biomass accumulation through stoichiome-

tric constraints on the elemental composition of vegeta-

tion, such that rates at which these elements are

sequestered in vegetation are grossly proportional to

rates of biomass accumulation (Yang et al., 2011).

Indeed, mirroring the climate dependence of rates of

biomass accumulation (Fig. 2a–b; Anderson et al.,

2006), it has been observed that the rate of N uptake by

a regrowing tropical forest in Costa Rica is four times

that of a regrowing temperate forest at Hubbard Brook,

USA (Russell & Raich, 2012). However, the trajectory of

forest recovery is also shaped by biogeochemistry–
climate interactions. For example, climate influences

temporal patterns of N availability during secondary

succession (Vitousek et al., 1989), rates of change in soil

C and N (Li et al., 2012), and plant tissue stoichiometry

(Wright et al., 2004). Thus, climate may indirectly influ-

ence forest recovery through its influence on biogeo-

chemistry, as occurs in the case of forests developing

on Hawaiian lava flows (Anderson-Teixeira et al., 2008;

Anderson-Teixeira & Vitousek, 2012).

A few studies have compared rates or pathways of

secondary succession across broad climatic gradients.

Following clear cutting in western Oregon, climate

shapes both the rate and pathway of forest succession;

in the western Cascades region, conifer regeneration is

slower and follows a longer establishment delay com-

pared with the more mesic Coastal Range region (Yang

et al., 2005). In subalpine forests of the Colorado Rock-

ies, the rate of succession is more than twice as rapid in

mesic sites as compared with xeric sites (Donnegan &

Rebertus, 1999). Likewise, in the Medicine Bow moun-

tains of Wyoming, succession to a mature spruce–fir
forest is most rapid in a mesic drainage bottom, slower

on a less mesic north-facing slope, and rarely occurs at

more arid sites prior to stand-clearing fire (Romme &

Knight, 1981). In the Czech Republic, the rate of succes-

sion in vegetative communities (including forests and

nonforests) is strongly influenced by climate; mean

annual change in dominant species cover during the

first 12 years of succession decreases dramatically with

increasing elevation (increasing precipitation and

(a) (b)

(c) (d)

Fig. 2 Influence of climate on forest recovery rates (a, b) and on aboveground C stocks of mature forests (c, d). The rate of aboveground

biomass accumulation in forests recovering from stand-clearing disturbance varies globally with respect to (a) mean annual tempera-

ture (MAT) and (b) precipitation (MAP). Data, which are from Anderson et al. (2006), represent natural regeneration in 68 unmanaged

forests worldwide. Solid and dashed lines represent an exponential fit and its 95% confidence interval, respectively. Similarly, above-

ground C stocks (biomass + coarse woody debris; CWD) in mature forests vary globally with respect to (c) MAT and (d) MAP. Data

from Anderson-Teixeira et al. (2011). Dashed lines represent hypothesized bioclimatic limits.
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decreasing temperature; Prach et al., 2007). These exam-

ples provide evidence that climate strongly influences

both the rate and pathway of succession.

In addition to its influence on the rate and trajectory

of forest recovery, climate also shapes the types of

steady-state conditions toward which secondary forests

can eventually converge. Globally, aboveground

biomass of forests is influenced by temperature and

precipitation (Fig. 2c–d; Keith et al., 2009; Anderson-

Teixeira et al., 2011; Larjavaara & Muller-Landau,

2012), and climate strongly influences most other major

components of ecosystem C cycles, including gross and

net primary productivity (GPP and NPP, respectively;

Luyssaert et al., 2007), soil and whole-ecosystem respi-

ration, and soil organic carbon (Raich & Schlesinger,

1992; Jobb�agy & Jackson, 2000). Similarly, species diver-

sity varies globally with respect to climate (Brown et al.,

1998). In sum, climate can determine the state to which

forests converge following disturbance both directly

through biophysical constraints and indirectly through

its influence on biogeochemistry and the surrounding

metacommunity.

The broad-scale patterns described above demon-

strate that climate strongly influences the rate of forest

recovery, successional pathways, and the structure and

function of mature forests. However, transient dynam-

ics under a rapidly changing climate may diverge from

expectations based on these contemporary patterns,

and increasing atmospheric CO2 concentrations will

alter physiological constraints on forests. To under-

stand the more immediate responses of forest recovery

to elevated CO2 and climate change, we turn to experi-

mental manipulations.

Forest responses to experimental manipulation of

CO2, temperature, and precipitation

Experiments manipulating CO2, temperature, and pre-

cipitation demonstrate that altered climatic conditions

will alter ecosystem and community dynamics in sec-

ondary forests. The responses of terrestrial ecosystems

in general to these experimental manipulations have

been previously reviewed (e.g., Pendall et al., 2004; De

Graaff et al., 2006; Norby & Zak, 2011; Wu et al., 2011;

Beier et al., 2012; Dieleman et al., 2012; Lu et al., 2012);

here, we focus specifically on the responses of forests

and any age dependency of their responses (Fig. 3).

Responses to CO2 fertilization

Tree-dominated ecosystems – all in temperate or boreal

regions – have been exposed to elevated CO2 through

Free-Air Carbon dioxide Enrichment (FACE), Open

Top Chamber (OTC), and Whole Tree Chamber (WTC)

experiments. Given the logistical difficulties of elevat-

ing CO2 in forests with tall canopies, the majority of

these experiments have been performed on young

forests or trees, with only one FACE experiment in a

mature forest to date (Table S1).

Elevated CO2 consistently enhances photosynthesis,

or GPP at the ecosystem level (Ceulemans & Mousseau,

1994; Curtis & Wang, 1998; Ainsworth & Long, 2005;

Hyv€onen et al., 2007). In young forests, this results in

increased NPP and biomass; at least at the onset of the

experiment (DeLucia et al., 1999; Norby et al., 2005).

However, whereas substantial NPP and biomass

increases have occurred at the onset of experiments,

this NPP stimulation has persisted in some but not all

forests (Oren et al., 2001; Seiler et al., 2009; McCarthy

et al., 2010; Norby et al., 2010). Moreover, this response

becomes less consistent as forests become older, and

NPP did not increase in the only mature forest exposed

to elevated CO2 (Fig. 3; K€orner et al., 2005; Bader et al.,

2009). Similarly, leaf and fine root biomass are consis-

tently stimulated in young forests, but may decline in

old forests (Fig. 3; K€orner et al., 2005; Bader et al., 2009).

Thus, although there is strong evidence that CO2 fertil-

ization increases the rate of biomass accrual in young

forests, a question remains as to whether elevated CO2

increases the biomass and productivity of mature for-

ests (Fig. 1; K€orner et al., 2005; Hyv€onen et al., 2007;

Norby & Zak, 2011). In large part because of this uncer-

tainty, it remains unclear whether the net carbon

balance of mature forests will increase in response to

CO2 fertilization (Fig. 3).

The ability of forests to sustain increased NPP under

elevated CO2 as they age – and, ultimately, the potential

for mature forests to increase C storage under elevated

CO2 – depends in large part upon biogeochemistry. One

potential explanation of observed declines in NPP stimu-

lation under elevated CO2 as forests age is that increased

productivity immobilizes nutrients in woody tissue or soil

organic matter such that soil N and other nutrients

needed to sustain growth become depleted and may

eventually limit growth (Luo et al., 2004). Progressive N

limitation can be alleviated through a variety of mecha-

nisms: trees can increase their N use efficiency, invest

more C in belowground nutrient acquisition, or access

deep N pools (McKinley et al., 2009; Iversen, 2010; Drake

et al., 2011b; Norby & Zak, 2011). N limitation can also be

mitigated if greater N mineralization occurs under high

CO2, or if N2 fixation is stimulated by elevated CO2

(Zanetti et al., 1996; Hungate et al., 2004; Luo et al., 2004;

Hoosbeek et al., 2011; Norby & Zak, 2011). Early work

suggested that N mineralization declines under elevated

CO2 (Hungate et al., 1999), but more recent studies sug-

gest that there can be a priming effect through time from

increased atmospheric CO2 that stimulates soil micro-
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bial activity, which in turn degrades slowly cycling

organic matter pools and release mineral N (Carney

et al., 2007; Langley et al., 2009; Drake et al., 2011b).

Elevated CO2 may also increase N availability by

increasing labile C to drive the energetics of N2

fixation (Hungate et al., 1999). However, in a

scrub-oak system in Florida, N2 fixation was negatively

impacted by 7 years exposure to elevated CO2 (Hun-

gate et al., 2004), and N2-fixation rates have continued

to decline – perhaps due to canopy closure and light

limitation (Duval, 2010). Thus, N deficiency may be

avoided – and NPP stimulation sustained – over time

through a variety of mechanisms; however, it remains

uncertain whether this can continue indefinitely or

whether NPP stimulation in all forests would eventu-

ally decline given sufficient time (Hyv€onen et al., 2007;

Norby & Zak, 2011).

The responses of tree growth to elevated CO2 are

variable among species (Bazzaz, 1990; Saxe et al.,

1998; Pe~nuelas et al., 2001; K€orner et al., 2005; Seiler

et al., 2009; Dawes et al., 2011), and differential spe-

cies responses have commonly been observed in

CO2-enrichment experiments (Table S1). For exam-

ple, of the three codominant canopy tree species

(Fagus sylvatica, Quercus petraea, Carpinus betulus) in

the mature deciduous forest exposed to elevated

Fig 3 Schematic diagram illustrating typical forest successional trajectories under ambient climate (solid lines; as reviewed in Table 1)

and how these are affected by experimental CO2 fertilization, warming, and drought (increases in blue, decreases in red; color satura-

tion scales with certainty). Responses to CO2 and climate change are based on a comprehensive review of experimental studies (Tables

S1–S3). Responses are considered to have high certainty when observed in multiple sites and low certainty when observed in only one

study. *Indicates a response that is time dependent; it may change from negative to positive as increased N mineralization stimulates

biomass growth (Melillo et al., 2011).
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CO2, shade-tolerant Fagus exhibited increased annual

basal area increments in response to CO2 in two of

four treatment years, whereas growth of the other

species remained the same or declined (K€orner et al.,

2005). Similarly, proportional species’ contributions

to whole-ecosystem productivity shifted in a Florida

scrub–oak ecosystems exposed to elevated CO2:

dominant Quercus myrtifolia exhibited strong biomass

growth, Q. chapmanii exhibited less of an effect, and

subdominant Q. geminata showed no growth stimu-

lation (Dijkstra et al., 2002). Thus, differential species

growth responses consistently alter proportional spe-

cies’ contributions to whole-ecosystem productivity

and will likely change the composition of future

communities.

Understory vegetation can influence ecosystem func-

tioning and future community composition (Nilsson &

Wardle, 2005) and, therefore, impacts of global change

on juvenile trees and influential nontree species serve

as a window into the forests of the future. Moreover, as

the majority of forest biodiversity is in the understory

stratum, impacts on understory species as well as sym-

biotic mycorrhizal fungi bear consequences for tree

recruitment, carbon cycling, forest health and biodiver-

sity (Gilliam, 2007). Understory community responses

to CO2 enrichment have been commonly observed

(Table S1). At ORNL-FACE, the woody understory

increased in importance relative to the total stand and

to herbaceous plants, indicating a potential acceleration

of succession under elevated CO2 (Souza et al., 2010).

Consistent with earlier work using pots and growth

chambers (Bazzaz & Miao, 1993; Kubiske & Pregitzer,

1996; Kerstiens, 1998, 2001; H€attenschwiler & K€orner,

2000), CO2 enrichment at DukeFACE tended to favor

slow-growing, shade-tolerant species with low rates of

productivity in understory conditions, again suggesting

that succession may be accelerated in temperate forests

under future conditions, with implications for bio-

sphere–atmosphere carbon feedbacks (Mohan et al.,

2007). In addition, CO2 enrichment may favor woody

vines (lianas; e.g., Sasek & Strain, 1990). This has been

observed in two FACE studies (Table S1); for example,

at DukeFACE, the woody vine poison ivy (Toxicoden-

dron radicans) growth was disproportionately enhanced

under elevated CO2 (Mohan et al., 2006). Lianas have

been expanding in abundance in many regions of the

world – often to the detriment of recruiting and mature

trees (Dillenburg et al., 1995; Ingwell et al., 2010; Schnit-

zer & Carson, 2010; Schnitzer & Bongers, 2011) – and

the positive feedback of elevated CO2 for vines may

hinder the establishment of secondary forests globally.

Thus, increasing atmospheric CO2 may substantially

alter the rate and pathway of succession as well as the

composition of mature forest communities (Fig. 1).

Responses to warming

Over the last three decades, several tree-dominated eco-

systems of various ages – almost all in temperate and

boreal regions – have been exposed to experimental

warming (Table S2). These experiments have warmed

either aboveground vegetation or the soil (through use

of buried cables); there are few soil-and-air warming

experiments done at the scale of canopy trees (Slaney

et al., 2007; Bronson & Gower, 2010).

Soil warming in northern forests results in faster

decomposition and microbial processing of soil C and

N, which directly releases more CO2 to the atmosphere

because of enhanced soil respiration (Table S2; Rustad

et al., 2001; Melillo et al., 2002, 2011). By increasing N

mineralization rates, soil warming can have an indirect

N fertilization effect, which generally increases above-

ground production and lowers C allocation to fine root

biomass (Fig. 3; Zhou et al., 2011). The net ecosystem C

balance in response to warming depends largely on the

counteracting effects of C release through increased soil

respiration and C sequestration through increased bio-

mass growth (Fig. 3); in a 60- to 70-year-old even-aged

oak–maple forest in central Massachusetts subjected to

7 years of soil warming (Harvard Forest), soil C losses

were increasingly offset by stimulated growth of can-

opy trees (after a lag of several years; Melillo et al.,

2011; Butler et al., 2012). Additional changes may be

driven by aboveground warming; over the first few

years of warming in a 12-year-old black spruce (Picea

mariana) plantation in Manitoba, soil respiration

increased under soil warming but decreased under

soil-and-air warming (Bronson et al., 2008). In this

study, elevated soil and air temperatures increased

spruce tree shoot growth (Bronson et al., 2009) but did

not change rates of photosynthesis or autotrophic respi-

ration (Bronson & Gower, 2010). Much remains to be

learned about how warming affects whole forested eco-

systems, particularly in subtropical and tropical forests,

where only one warming experiment has been con-

ducted to date (Cheesman & Winter, 2012). Moreover,

although we may posit that forest age modulates

warming responses based on the magnitude of struc-

tural and functional changes associated with forest

recovery (Table 1), there is of yet no clear evidence that

the direction of forest responses to warming varies by

age (Fig. 3).

Growth responses to warming vary among tree spe-

cies (Table S2), and this is likely to affect successional

dynamics and forest composition. For example,

although the large oaks at Harvard forest accounted for

the majority of C uptake and storage in woody tissue,

smaller maples exhibited a greater stimulation of

growth in response to soil warming stimulation (Mel-

Published 2013. This article is a U.S. Government work and is in the public domain in the USA., Global Change Biology, 19, 2001–2021

FOREST RECOVERY UNDER CLIMATE CHANGE 2007



illo et al., 2011; Butler et al., 2012; Mohan et al., unpub-

lished results). Similarly, a warming experiment in a

recently timbered oak–hickory forest in Pennsylvania

found altered phenology (with differential responses

among species) and community composition (Rollin-

son, 2010; Rollinson & Kaye, 2011). Thus, warming is

likely to alter species’ growth and phenology and,

thereby, the rate and pathway of succession and ulti-

mately the community composition of mature forests

(Fig. 1).

Responses to altered precipitation

There have been a number of precipitation manipula-

tion experiments in forests of a range of ages spanning

from boreal to tropical regions (Table S3; Beier et al.,

2012). Across this range of climates and forest ages,

tree growth and survival were generally increased by

water addition and reduced by water removal (Fig. 3;

e.g., Hanson et al., 2001; Nepstad et al., 2002; Plaut

et al., 2012; Vasconcelos et al. (2012), as was GPP or

NPP at the ecosystem level (Nepstad et al., 2002; Al-

berti et al., 2007). Soil respiration rates also tended to

increase under irrigation and decrease under drought

(Table S3; e.g., Conant et al., 2000; Sotta et al., 2007).

However, water addition only accelerated forest C

cycling up to a point; some more mesic forests did not

respond to precipitation manipulation (De Visser et al.,

1994; Bergh et al., 1999) or had accelerated C cycling

under reduced precipitation (Cleveland et al., 2010).

Sensitivity to precipitation manipulation often varied

by size class, but results were mixed as to whether

small or large trees were more sensitive (Hanson et al.,

2001; Nepstad et al., 2007). Whereas altered precipita-

tion had a strong effect on seedling emergence and

survival (Richter et al., 2012; Volder et al., 2012) and at

times had a stronger effect on small than on large trees

(Hanson et al., 2001), there were also instances where

exposed canopy trees suffered greater drought-related

stress (Nepstad et al., 2007; Schuldt et al., 2011). Thus,

within-stand relationships between tree age and

drought sensitivity do not necessarily mirror across-

stand relationships, where growth sensitivity to varia-

tion in water availability declines with stand age

(Table 1). As with experimental manipulation of CO2

and temperature, differential species responses were

commonly observed under precipitation manipulation

experiments (Table S3; e.g., Yavitt & Wright, 2008),

portending future changes to community composition

under altered precipitation regimes. Thus, in sum-

mary, precipitation manipulation experiments have

demonstrated that water availability affects rates of

forest recovery, mature forest states, and probably suc-

cessional pathways (Figs 1 and 3).

Responses to multivariate environmental manipulation

Joint effects of altered CO2, temperature, and precipita-

tion are rarely purely additive (Dieleman et al., 2012),

and understanding the interactive effects produced by

combined manipulations remains an important chal-

lenge. Experimental manipulation of more than one of

these elements in a factorial design has occurred in sev-

eral intact forests or experimental mesocosms (Tables

S1–S3). These studies demonstrate that tree growth and

carbon cycling in young forests are generally acceler-

ated under combined higher CO2, warmer, and wetter

conditions (Tables S1–S3; e.g., Wan et al., 2004;

Comstedt et al., 2006; Slaney et al., 2007; Tingey et al.,

2007; Bauweraerts et al., 2013). In addition, different

species have responded differently to different ele-

ments of climate change; for example, at the alpine tree

line in Switzerland, growth of Larix decidual responded

positively to CO2 but was unresponsive to soil warm-

ing, whereas Pinus cembra had a slight positive response

to warming but responded minimally to CO2 (Dawes

et al., 2011). The limited number of studies and the

complexity of multifactor experiments make it prema-

ture to generalize about how forests of different ages

will respond to interactive elements of global change.

However, observed responses of forests to the environ-

mental change that has already occurred – to which we

turn next – reveal how secondary forests are respond-

ing to multivariate climate change to date.

Altered forest recovery under contemporary

multivariate environmental change

Historical reconstructions indicate that forests of all

ages have responded to the changes in CO2 and climate

that have already occurred. By nature, these historical

records do not directly separate the effects of CO2, tem-

perature, and precipitation from one another and from

other potentially confounding environmental changes

(e.g., atmospheric deposition, ozone, management,

altered disturbance regimes). Rather, they provide a

picture of how the dynamics of forest recovery are

responding to contemporary multivariate environmen-

tal change.

Tree-ring and observational records extending back

decades to centuries have demonstrated the climate

dependence of forest productivity. Tree-ring records

have revealed increasing growth rates in numerous

forests including high-elevation forests in western

Washington (Graumlich et al., 1989), conifers in the

white mountains of California (Lamarche et al., 1984;

Salzer et al., 2009), Pinus ponderosa forests in the US

Pacific northwest (Soul�e & Knapp, 2006), aspen (Popu-

lus tremuloides) secondary forests in Wisconsin (Cole
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et al., 2010), Abies and Quercus forests in France (Bec-

ker, 1989; Becker et al., 1994), and numerous other for-

ests throughout Europe (Spiecker, 1999; Babst et al.,

2013). These increased growth rates are generally

attributable to increased atmospheric CO2, tempera-

ture, or moisture (e.g., Graumlich et al., 1989; Soul�e &

Knapp, 2006; Salzer et al., 2009; Cole et al., 2010). In

contrast, tree growth rates have decreased in response

to warming or drought stress in many other forests

around the world (Allen et al., 2010), including white

spruce (Picea glauca) in interior Alaska (Barber et al.,

2000), conifers in the southwest United States

(Williams et al., 2013), and tropical forests in Panama,

Malaysia, and Costa Rica (Feeley et al., 2007b; Clark

et al., 2010). Similarly, a review documenting evidence

of altered forest productivity over the last half century

indicates that the productivity of many forests is

increasing whereas that of others is declining (Boisve-

nue & Running, 2006). Although powerful for under-

standing the historical influence of climate on forest

productivity, these records are limited in that they do

not characterize responses across a range of forest

ages.

By comparing biomass–age relationships (deter-

mined through a chronosequence approach) with cur-

rent biomass accumulation rates in forests of various

ages (determined through repeated sampling), a couple

of studies have identified accelerated biomass accumu-

lation in forests following stand-clearing disturbances.

Specifically, accelerated biomass accumulation has been

observed in temperate deciduous forests in the eastern

United States (McMahon et al., 2010a; see also Foster

et al., 2010; McMahon et al., 2010b) and in temperate-

maritime forests in the Pacific northwest (Fig. 4; Hem-

ber et al., 2012). Likely explanations of these increases

in secondary forest biomass accumulation rates include

increased atmospheric CO2, increased temperature,

increased moisture, and increased growing season

length (McMahon et al., 2010a; Hember et al., 2012).

Thus, climate change appears to be increasing the rate

of forest regrowth in some temperate forests; however,

parallel studies have yet to be conducted in other

regions.

The long time frame of forest recovery precludes

comparison of forests that have matured under differ-

ent climates, which would be necessary to determine

whether climate change is altering recovery trajectories

such that forests converge to an altered state as they

mature (Fig. 1). However, long-term monitoring of

mature forests can provide evidence as to whether

climate change is affecting the state of forests that

matured under past climates. Long-term monitoring of

old-growth forests provides mixed evidence as to

whether their total carbon storage capacity is changing;

many old-growth forests throughout the world appear

to be net C sinks (Baker et al., 2004; Luyssaert et al.,

2007; Chave et al., 2008; Lewis et al., 2009); however,

this effect is diminished at larger spatiotemporal scales

of measurement (Clark, 2002; Feeley et al., 2007a; Chave

et al., 2008). There is strong evidence of directional

change in community composition of forests through-

out the world; for example, long-term records from the

50 ha forest dynamics plot on Barro Colorado Island,

Panama, indicate increased dominance of drought-

tolerant species (Feeley et al., 2011). In addition, there

have been general increases in forest die-back globally

– a phenomenon attributed to climate change–type
drought (Breshears et al., 2005; Allen et al., 2010;

Williams et al., 2013).

Thus, there is evidence of historical change in both

rates of forest regrowth and the state of forests that

matured under past climates. There is also some evi-

dence of changing successional trajectories driven by

altered community dynamics (reviewed below).

Although concurrent changes in multiple environmen-

tal factors including atmospheric CO2, climate, atmo-

spheric deposition, herbivore communities, disturbance

regimes, and management make it difficult to isolate

the cause of these changes, their global distribution and

directional correlation with trends in CO2 and climate

provide strong evidence that they are at least partially

attributable to increasing atmospheric CO2 and climate

change.

Fig. 4 Evidence of increasing rates of biomass accumulation in

coastal Douglas fir (Pseudotsuga menziesii) and western hemlock

(Tsuga heterophylla) forests in southwest British Columbia, Can-

ada. Plotted is the residual average biomass increment (ΔB) from
1267 permanent inventory plots after correction for factors

including stand age, site quality, nitrogen availability, and

biomass (the five lines represent different correction methods,

as detailed in Hember et al., 2012). Linear regression represents

a significant positive trend. Reprinted from Hember et al. (2012).
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Community dynamics and the potential for state

changes

Successional pathways may be altered when elevated

CO2 and climate change affect community dynamics,

either directly through differential effects on the perfor-

mance of various species and size classes or indirectly

through altered disturbance regimes and consequent

competitive outcomes.

Climate change will alter community dynamics by

altering the physical environment in which species of

varying physiological strategies are competing. Experi-

mental climate change manipulations (reviewed above;

Tables S1–S3) and decades of forestry research on the

climate sensitivity of forest regeneration (Fowells &

Stark, 1965; Ferrell & Woodard, 1966; Thomas & Wein,

1985) have demonstrated that increased CO2 and

altered climate will differentially affect growth rates of

trees by size and species, thereby altering population

dynamics, competitive interactions, and species compo-

sition of both young and mature forests. In addition,

climate change can differentially favor or inhibit com-

mon forest pathogens, providing another mechanism of

impact on community structure (reviewed by Sturrock

et al., 2011). Such community changes can affect ecosys-

tem function, altering production, C stocks, and biogeo-

chemistry. For example, model predictions of climate

change effects on forest productivity can be very differ-

ent if the community is allowed to develop dynami-

cally, compared with using parameters based on

average forest characteristics, which is a common prac-

tice in biogeochemical models examining the effects of

climate change (Bolker et al., 1995).

Beyond its direct effects on the dynamics of forest

recovery through physiological mechanisms, climate

change may also impact successional pathways indi-

rectly by altering the frequency, timing, severity, and

spatial extent of disturbances including fires, droughts,

storms, floods, and herbivore or pathogen outbreaks

(e.g., Dale et al., 2001; Westerling et al., 2006; Allen

et al., 2010; Sturrock et al., 2011). Frequency and inten-

sity of disturbance have been theoretically shown to

have very different effects on community diversity

(Miller et al., 2011; in determining microcosm diversity

(Hall et al., 2012). Thus, changes in disturbance frequency

and intensity have the potential to shift community

composition, even when species are restricted to (and

are still viable in) their historic ranges. Moreover, large

changes to disturbance regimes are not required to

facilitate changes in community composition; in the

annual plant model of Miller et al. (2011), changing

disturbance mortality by just a few percentage points

can send a species to extinction. Changes in community

composition driven by altered disturbance regimes

may have dramatic consequences for ecosystem func-

tioning. For example, in Alaskan boreal forests, increas-

ing fire frequency and severity have shifted

competitive dominance from conifers to deciduous spe-

cies, affecting biomass and soil C accumulation, albedo,

and energy partitioning (Beck et al., 2011).

Disturbance can also provide niche opportunities for

invaders (Shea & Chesson, 2002), and the successful

invasion can dramatically alter successional trajectories

and also feedback to further modify disturbance

regimes (Mack & D’Antonio, 1998). Although distur-

bances are commonly believed to increase invader suc-

cess, recent work suggests that it is changes to

disturbance regimes, rather than disturbance events per

se that most strongly influence a communities’ suscepti-

bility to invasions (Moles et al., 2012). In this light,

climate change is likely to change the composition of

some communities by altering disturbance regimes to a

point where invader species can become dominant.

In some cases, climate change may push forests past

critical thresholds such that, upon perturbation, they

undergo drastic changes in community composition

and ecosystem properties (‘catastrophic shift’) and fail

to return to their previous state (Fig. 5). In many sys-

tems, the observed state of the community is not the

only possible stable state; a variety of empirical results

demonstrate the existence of alternative stable states in

nature (D’Antonio & Vitousek, 1992; Savage & Mast,

2005; Schr€oder et al., 2005; Odion et al., 2010; Scheffer

et al., 2012). Large changes in the environment can

bring about large changes in ecosystems, but smooth,

gradual changes in abiotic conditions also can cause

abrupt shifts in ecosystem properties and functioning

(Scheffer et al., 2001). Systems that are structured by

disturbance and are susceptible to abiotic forcing (such

as regenerating forests) may be more likely to display

alternative stable states (Didham et al., 2005). When dis-

turbance keeps systems in perpetual flux, as is the case

for many forests, no true stable equilibrium (in the clas-

sical, dynamical systems sense) is reached. Instead, for-

ests undergo periodic cycles of disturbance and

regeneration, and it is these cycles that constitute the

‘state’ of the system.

Many forests are resilient (sensu Grimm & Wissel,

1997) to commonly experienced disturbances, but

effects of climate change, such as changes to the distur-

bance and precipitation regimes, can change the

composition and productivity of forest communities

(Thompson et al., 2009), forcing the system into

different cyclical behaviors. Although different initial

trajectories can lead to different mature forest states,

there is also the possibility that different initial trajecto-

ries can lead to the same mature state, or that similar

initial trajectories can lead to distinct mature states
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(Fig. 1, ‘alternative transient states’ sensu Fukami &

Nakajima, 2011).

In some forested regions, the existence of alternative

stable states implies that forests may not return to their

previous state following disturbance. A general mecha-

nism underlying such alternative stable states is that

seedlings and young forests are often more vulnerable

to disturbances such as drought, herbivory, and fire

than their mature counterparts (Table 1; Stromayer &

Warren, 1997; Thompson & Spies, 2010). As a result,

conditions that support the persistence of mature

forests may not be amenable to forest regeneration. For

example, following fire, conifer regeneration may be

delayed or prevented by drought or competitive inhibi-

tion by grasses or shrubs (Savage & Mast, 2005;

Roccaforte et al., 2012). There are also systems in which

postfire establishment of pyrogenic vegetation or

vulnerability of young stands to crown fire reduces the

probability of forest regeneration (D’Antonio & Vitousek,

1992; Savage & Mast, 2005; Thompson & Spies, 2010;

Staver et al., 2011). For example, in the Klamath region

of Oregon and California, high-intensity fire shifts the

community from a high-biomass mixed conifer forest

to a pyrogenic low-biomass shrub–chaparral–hard-
wood community, in which state it may be maintained

by subsequent fires of any intensity (Odion et al., 2010;

Thompson & Spies, 2010). Alternative stable states may

also be driven by hydrologic, microclimatic, or biogeo-

chemical mechanisms; for example, postfire forest

resilience may be impacted by changes to soil biogeo-

chemistry and hydrological functioning (Ffolliott et al.,

2011; Smithwick, 2011).

Climate change may gradually alter the landscape of

alternative states, having minimal impact on mature

forests, but shifting conditions such that forests will be

unlikely to reestablish following disturbance (Fig. 5).

The probability of forest regeneration may be reduced

by mechanisms such as reduced probabilities of seed-

ling establishment under more arid conditions, reduced

competitive advantage of seedlings relative to grasses

or shrubs, or increases in disturbance frequency or

severity. Although ecological theory points toward the

risk that some forests may unlikely to return to their

previous state following stand-clearing disturbance as a

result of global change (Fig. 5), empirical evidence

remains scant. In the southwestern United States, pon-

derosa pine forests meet the criteria for forests that may

be vulnerable to climate change-induced catastrophic

shifts and are often failing to reestablish following fire

(Dore et al., 2008; Roccaforte et al., 2012); however, a cli-

mate change mechanism has not been demonstrated.

Understanding the potential for climate change to dra-

matically alter or prevent postdisturbance recovery

remains an important challenge.

Thus, based on empirical findings and theoretical

concepts, community composition and ecosystem func-

tion of regenerating forests under climate change are

likely to change, both quantitatively, and in terms of

stability. Given that climate change, disturbance

regimes, and community dynamics interact in complex

ways to shape ecosystems, correctly predicting the

behavior of forests over the next century will require

greater understanding of the potential for altered com-

munity dynamics to dramatically impact carbon

cycling, biogeochemistry, and ecosystem–atmosphere

exchanges.

Ecosystem and earth system model projections

Ecosystem and earth system models (ESMs) provide a

means to project dynamically how ecosystems will be

impacted by multiple interacting environmental

changes over spatiotemporal scales that exceed the

limits of observation and experimentation. ESMs vary

in complexity from fully coupled global circulation

Fig. 5 Schematic diagram illustrating the potential for

disturbance to force ecosystems from one stable state to another

as the climate changes. Colored shapes represent the landscape

of stable ecosystem states under different climate regimes, and

balls represent states in which ecosystems can stably exist – in

this case, the state to which the system converges at maturity

(which will be associated with a stable disturbance–recovery

regime). The plot below illustrates hysteresis, wherein alternate

stable states exist. As the climate changes, basins of attraction

shift such that the stable state at maturity eventually switches

from one state to the other. During the transition, however, dis-

turbance (indicated by black arrow) may hasten the shift from

one stable state to another. Modified from Scheffer et al. (2001).
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models (GCMs), which include two-way feedbacks

between the land, atmosphere, and oceans to make pre-

dictions about climate, to simpler models with less

interaction between the earth system components (e.g.,

one-way feedbacks to the atmosphere such as land-

cover changes to net terrestrial CO2 uptake). ESMs

include land components embedded with physiological

and biogeochemical mechanistic representations of the

interactions between vegetation, the atmosphere, and

either prognostic disturbances (i.e., fire) or prescribed

disturbances (i.e., harvest). Vegetation is represented in

terms of broadly defined plant functional types (PFTs;

e.g., temperate conifers). When coupled with a specific

class of ecosystem models (dynamic global vegetation

models; DGVMs), processes are included that allow

vegetation type to change based on climate conditions

(e.g., forest to grassland or woodland). Recent advance-

ments to some ESMs (CESM/CLM4.0, ORCHIDEE,

TEM) now include dynamic response variables for the

long-term physiological changes related to CO2 and/or

temperature (Krinner et al., 2005; Thornton et al., 2007;

Zaehle & Friend, 2010). The complexity of these models,

and the variety of factors upon which model predic-

tions and associated uncertainty depend, preclude the

possibility of any one model incorporating all of the

known complexity of forest regeneration. However, for

models to make predictions about forest recovery

following disturbance, they need to be able to capture

the interactive effects of changing environmental condi-

tions and disturbance on forest recovery dynamics.

No model pays detailed attention to the roles of for-

est age and successional changes in species composition

in shaping the dynamics of forest recovery. Rather,

regenerating forests are generally parameterized as

mature forests, although sometimes there are two age

classes (e.g., fire BGC; Smithwick et al., 2009), and car-

bon allocation to wood may vary dynamically with age

(e.g., CLM4; Hudiburg et al., 2013). We are aware of

only one model where C allocation to nonwoody

components or physiology changes dynamically with

age (and this improves performance in describing age

trajectories of woody productivity; Davi et al., 2009).

Changes in community composition (i.e., PFTs), physi-

ological differences between early- and late- succes-

sional species, and age structure within a forest

(Table 1) generally are not incorporated (exception is

ED2; Medvigy et al., 2009). As a result, models have

difficulty accurately reproducing trajectories of change

in biomass or other components of the C cycle associ-

ated with forest age (Table 1). Nevertheless, to the

extent that forest responses are consistent across age

classes (Fig. 3), models can predict productivity

responses of young forests to elevated CO2 and climate

change. Simulated climate change effects on forest

growth vary by model, region, and climate change sce-

nario; the direction of change in forest growth is

expected to vary regionally and to depend on the

course of atmospheric CO2 and climate change

(Kirilenko & Sedjo, 2007). For example, in lodgepole

pine (Pinus contorta) forests regenerating from fire in

the Yellowstone region, woody production, live

biomass, N mineralization, and total ecosystem C are

projected to increase under two different future climate

scenarios, with percent increase depending on the cli-

mate scenario (Smithwick et al., 2009). Thus, models

demonstrate likely changes in forest productivity under

future climates; however, without giving specific atten-

tion to changes in physiology and C allocation with for-

est age, they say little about the responses of

regenerating forests specifically.

Because disturbance type, severity, size, and fre-

quency affect postdisturbance C dynamics and biogeo-

chemical cycling (Amiro et al., 2010; Smithwick, 2011),

future trajectories of forest recovery are likely to be dri-

ven by climate change–disturbance type interactions. In

most models, disturbance events are generally imple-

mented by altering forest biomass pools through remo-

vals (harvest), combustion (fire), or transfer of live to

dead material (insect outbreaks), with the amount

transferred scaled to disturbance severity. For fire and

insect outbreaks, the timing of transfer of biomass to

litter and forest floor components varies because tree

death can occur slowly, and snag fall rates are depen-

dent on a variety of factors including forest type

(Campbell et al., 2007; Edburg et al., 2011). At this time,

we are unaware of any model capable of representing

the specific dynamics (e.g., recruitment, altered hydrol-

ogy, or biogeochemistry) associated with distinct dis-

turbance types, severities, and sizes. Therefore, models

currently say little about how changing disturbance

severity and size are likely to impact forests; however,

they do reveal how altered disturbance frequency is

likely to impact forests. For example, in the Yellow-

stone region, fire burn area and frequency are projected

to increase under a range of future climate scenarios,

quite possibly to the extent that current forest commu-

nities will have insufficient time to recover before the

next fire event, making the current suite of conifer spe-

cies unlikely to persist (Westerling et al., 2011). Thus,

models demonstrate that climate change is likely to

have significant impacts on forested landscapes

through its influence on disturbance regimes.

Despite their uncertainties, ESMs have demonstrated

that forest recovery will be substantially altered under

future climates. Rates of recovery will change, with

direction and magnitude varying regionally and

depending on future courses of atmospheric CO2 and

climate change. Altered disturbance regimes will inter-
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act with altered recovery trajectories, at times driving

biome shifts (Westerling et al., 2011). In combination,

the direct and indirect effects of climate change are pre-

dicted to have substantial impacts on regional C bal-

ances and forestry operations; for example, harvestable

forest biomass in Canada is projected to be reduced

26–62% for the 21st century, depending on the model

assumptions of predicted growth rate, soil carbon

decay rate, and area burned by fire (Metsaranta et al.,

2011). However, specific representation of physiological

and community changes associated with forest age

(Table 1) will be required to understand how forest

recovery trajectories will be altered by climate change

(Fig. 1).

Conclusions

As reviewed above, there is strong evidence that

increasing atmospheric CO2, warming, and altered

precipitation regimes will alter trajectories of forest

recovery. This conclusion is supported by global patterns

in both forest regrowth rates and biomass of mature

forests (Fig. 2); responses of forests of various ages to

CO2, temperature, and precipitation manipulation

(Fig. 3; Tables S1–S3); observations of altered forest

recovery under contemporary multivariate environ-

mental change (Fig. 4); our understanding of succes-

sional community dynamics and alternative stable

states (Fig. 5); and models. Because forests undergo

major structural, physiological, biogeochemical, and

compositional changes as they age (Table 1), it is logical

that responses to climate change vary as a function of

forest age (Fig. 3). Depending on differential responses

of forests of different ages, climate change can impact

rates of forest recovery, states of mature forests, and/or

recovery pathways (Fig. 1, Table 2), and understanding

the impact of climate change on forests therefore

requires attention to the role of forest age (Fig. 1).

Through its influence on young forests, climate

change will impact rates of forest recovery (Fig. 1,

Table 2). Multiple lines of evidence point to accelerated

regrowth inmesic northern forests under future climates

(Figs 2–4; Tables S1–S2); however, responses of tropical

forest regeneration rates to elevated CO2 and increasing

temperature remain uncertain. For forests globally, there

is strong evidence that biomass accumulation rates will

decrease under more arid conditions (Figs 2b and 3;

Table S3) – sometimes to the point where forests may

never recover (Fig. 5). Changes to rates of nutrient

accumulation in biomass, biogeochemical cycling, and

community change are likely to parallel responses of

biomass accumulation rate (Table 2).

Climate change will also impact the state toward

which forests converge as they age (Fig. 1; Table 2). A

challenge of central importance is in understanding

how climate change responses of young forests – on

which the majority of manipulative experiments have

been performed (Tables S1–S3) – relate to the ultimate

state of these ecosystems once they reach ‘maturity’

(Fig. 1). For instance, we do not know whether

increased biomass accumulation in young forests will

translate to increased biomass of old forests or whether

these forests will simply attain maximum biomass fas-

ter. The effect of elevated CO2 on mature forest biomass

and total ecosystem C remains uncertain, although

decreases in either are unlikely; meanwhile, elevated

CO2 is very likely to result in increased nutrient limita-

tion (Fig. 3; Table S1). Likewise, it remains unclear how

warming will affect mature forest biomass and ecosys-

tem C stocks (Fig. 3); it is likely that aboveground C

stocks will increase in northern climates (Fig. 2c) while

soil C stocks decrease and N mineralization increases

(Table S2). In contrast, changes in water availability

have predictable effects; reduced water availability will

reduce productivity, live biomass, and total ecosystem

C stocks (Figs 2d and 3; Table S3). In all cases, altered

community composition is very likely (Table S3).

Responses of mature forest states to combined changes

in CO2, temperature, and precipitation will vary region-

ally, and understanding how the states toward which

future forests will converge as they recovery from dis-

turbance (Fig. 1) remains an important challenge.

Climate change is also likely to impact pathways of

forest recovery (Fig. 1; Table 2), which may occur

through a variety of mechanisms including altered bio-

geochemistry (e.g., decreased N limitation during early

stages due to increased N mineralization), changing

biophysical constraints (e.g., reduced frequency of

years with enough precipitation to support seedling

establishment), or altered community dynamics. As

reviewed above, different species within the same com-

munity commonly have substantially different

responses to altered CO2 or climate (K€orner et al., 2005;

Mohan et al., 2006, 2007; Seiler et al., 2009; Dawes et al.,

2011), and consequent changes to community structure

may impact ecosystem functioning in ways that cannot

be predicted based solely on characteristic physiologi-

cal responses of dominant taxa (Bolker et al., 1995). For

example, increased liana biomass under future climates

could meaningfully reduce forest biomass (Phillips

et al., 2002; Mohan et al., 2006; Ingwell et al., 2010). Dif-

ferential responses are likely to be most influential early

in succession, when species turnover rate is highest and

trees are most sensitive to environmental variation

(Table 1), and may have an enduring influence on com-

munity composition and ecosystem function (D’Anto-

nio & Vitousek, 1992; Bunker et al., 2005; Beck et al.,

2011; Hooper et al., 2012).

Published 2013. This article is a U.S. Government work and is in the public domain in the USA., Global Change Biology, 19, 2001–2021
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In the most dramatic cases, altered successional

pathways may result in catastrophic shifts to an

alternate stable state (e.g., a forest to grassland tran-

sition; Fig. 5). There are documented instances

where, following disturbance, young forests fail to

establish or persist under conditions that are amena-

ble to persistence of mature forests (Thompson &

Spies, 2010; Roccaforte et al., 2012). When these con-

ditions are linked to climate, as they often are (e.g.,

sufficient moisture for seedling establishment, fire

regime), climate change is likely to force a transition

to an alternate stable state (Fig. 5). As a result,

directional changes to forest ecosystems that would

happen gradually in the absence of disturbance may

be greatly accelerated by disturbance (Fig. 5).

There remain several important unanswered ques-

tions regarding the impact of climate change on the

dynamics of forest recovery:

(1) How does forest age modulate responses to climate

change? Forests of different ages have responded differ-

ently to climate manipulations (Fig. 3; Tables S1–S3);
however, at this point climate manipulation experi-

ments provide only circumstantial evidence of age dif-

ferences in climate change response. Systematic

comparison of responses of forests of different ages to

experimental CO2 or climate manipulation and to natu-

ral climate variability will be crucial to understanding

and modeling climate change impacts on forests of all

ages.

(2) How will successional trajectories differ under future

climates? Beyond understanding how age modulates

forest responses to climate change, we face the chal-

lenge of understanding how climate change will impact

entire trajectories of forest recovery (Fig. 1). It is impor-

tant to note that, because the climate history under

which a stand has developed affects its current state

and future trajectory, changes to entire trajectories can-

not be understood simply by integrating across

responses of forests different ages. Rather, it will be

important to understand how altered biogeochemical

dynamics and community composition shape succes-

sional pathways and the states toward which forests

converge as they mature.

(3) Where and when will state changes occur? Climate

change-driven regime shifts (Fig. 5) will have dramatic

consequences, yet they remain difficult to document

and predict. There is a need for experimental, observa-

tional, and modeling studies to identify the conditions

under which such shifts are likely and the mechanisms

through which they may occur.

(4) How will tropical forest regeneration respond to cli-

mate change? Although tropical forests are well repre-

sented in global-scale comparisons (Fig. 2),

precipitation manipulation experiments (Table S3), and

long-term monitoring of mature forests (e.g., Chave

et al., 2008), we are aware of only one study manipulat-

ing CO2 or temperature at the whole-tree level in a field

setting in the tropics (Cheesman & Winter, 2012). This

constrains our ability to predict climate change

responses of tropical forests. Understanding how

climate change will affect tropical forest regeneration is

particularly important given the widespread use of

slash-and-burn agriculture in the tropics and the signif-

icant role of tropical forest regrowth in the global C

cycle (Pan et al., 2011).

An additional challenge lies in improved representa-

tion of forest recovery dynamics in ESMs, which are

currently simplistic in their treatment of forest recovery

dynamics. Although detailed representation of forest

recovery dynamics in global models is infeasible, we

believe that two advances will be important to improv-

ing the treatment of forest regeneration. First, the most

important stand age-dependent physiology and alloca-

tion strategies (driven by aging of dominant species

and changes in species composition) should be identi-

fied and incorporated. This will allow improved repre-

sentation of the dynamics of forest recovery in current

and future climates. Importantly, this will help to iden-

tify situations where young forests fail to establish

despite the persistence of their mature counterparts,

suggesting climate change-driven regime shifts (Fig. 5).

Second, although modeling individual species in ESMs

is infeasible, it will be necessary to represent the conse-

quences of demonstrated variability in species

responses to climate change and inevitable resultant

shifts in community composition and ecosystem pro-

cesses. With changing community composition, the net

ecosystem response may differ significantly from that

which would be predicted based on mean characteris-

tics of the original community (Bolker et al., 1995). In

the most dramatic cases, altered competitive interac-

tions may result in a regime shift from forest to a grass-

or shrub-dominated state (Fig. 5). Predicting regime

shifts in ESMs will be particularly important, as these

imply feedbacks to the climate system through altered

C storage, albedo, and hydrology.

Changes in the dynamics of forest recovery following

disturbance will result in potentially significant climate

feedbacks. Altered disturbance–recovery dynamics may

impact the C cycle enough to reverse the sign of a regio-

nal C cycle feedback (Kurz et al., 2008; Running, 2008;

Metsaranta et al., 2011). Moreover, albedo and evapo-

transpiration are important components of the climate

regulation services of ecosystems (Anderson-Teixeira

et al., 2012), change systematically over the course of for-

est recovery (Randerson et al., 2006; Kirschbaum et al.,

2011; Jin et al., 2012; O’Halloran et al., 2012), and may

shift substantially in response to climate change – partic-
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ularly if the new community differs dramatically from

the old (Beck et al., 2011). Altered forest recovery

dynamics will result in particularly strong feedbacks to

climate change when a critical threshold is passed such

that forests fail to recover (Fig. 5), resulting in dramatic

reductions in C storage and altered biophysical proper-

ties. For example, in semiarid regions such as the US

southwest, current forest communities may not be sup-

ported under future more arid conditions and may not

re-establish following disturbance, resulting in a posi-

tive C cycle feedback (Breshears et al., 2005; Williams

et al., 2010, 2013; Anderson-Teixeira et al., 2011; Rocca-

forte et al., 2012). Thus, recently disturbed forests may

play a key role in shaping terrestrial feedbacks to climate

change.

This review has demonstrated that the dynamics of

forest recovery are likely to be significantly impacted

by rising atmospheric CO2 and climate change. This

will have repercussions for biodiversity, climate, and

even economics, as the forestry industry and emerging

woody bioenergy industry stand to be affected by

altered forest regeneration rates (Kirilenko & Sedjo,

2007; Metsaranta et al., 2011; Hanewinkel et al., 2013).

Because the course of forest recovery shapes forest

structure and function for decades or centuries, climate

change impacts on secondary forests will have a lasting

legacy. Although the proportion of recently disturbed

forests is relatively small at any given time, disturbance

eventually affects all forests, and the proportion of for-

ests that have regenerated under altered climate condi-

tions will steadily grow. In these ways, climate change

will broadly impact forested regions through its influ-

ence on forest recovery dynamics.
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Supporting Information

Additional Supporting Information may be found in the
online version of this article:

Table S1. Summary of experimental manipulations of CO2

in tree-dominated ecosystems through Free-Air Carbon
dioxide Enrichment (FACE), Open Top Chamber (OTC), or
Whole Tree Chamber (WTC; in situ only) methodology.
Table S2. Summary of experimental warming in tree-domi-
nated ecosystems (listed in order of forest age).
Table S3. Summary of experimental manipulations of pre-
cipitation (PPT) in tree-dominated ecosystems (listed in
order of forest age).
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